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Abstract

A stereoselective, chiral synthesis of the glyoxalase | inhibitor 2-crotonyloxymetRybR®BR)-4,5,6-
trihydroxycyclohex-2-enoné (COTC) from a simple derivative of ()-quinic acid is described. © 2000 Elsevier
Science Ltd. All rights reserved.

The metabolic detoxification of reactive-ketoaldehydes into benign-hydroxyacids is achieved
by the glyoxalase I/ll enzyme system in conjunction with reduced glutathione. Although the catalytic
mechanism of glyoxalase | (lactoylglutathione lyase, EC 4.4.1.5) has not been fully eludidated,
has been suggested that inhibitors of this enzyme might serve as potential tumor-selective anticancer
agents>3 Of notable interest in that connection is the glyoxalase | inhibitor 2-crotonyloxymethyl-
(4R 5R,6R)-4,5,6-trihydroxycyclohex-2-enonk (COTC, shown below), which was first isolated from
the culture broth ofStreptomyces griseosporeby Umezawa and co-workefsBesides exhibiting
selective cytotoxic activity, COTC is also cancerostatic, and enhances the potency of other anticancer
agent$ With its unusual structure and promising biological profile, COTC has attracted the attention of
synthetic chemists. To date, four successful enantioselective syntheses have been Téf@tading
from a readily available derivative of (-quinic acid, an 8-step synthesis bfs disclosed that features
a regioselective epoxide opening under oxidative conditions. Also of interest is a regioselective tin-
mediated monooxidation of a bis-allylic diol uncovered during the synthesis.
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Starting from the known cyclohexylidene acet@ of ( )-methyl quinaté! the allcis-
trihnydroxycyclohexene ring framework dfwas assembled as shown in Scheme 1. The bis-triflage of
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spontaneously forme8lupon stirring at rt. When treated with cesium acetat&fforded dienel in good
yield,2 which, without purification, underwent face-selective addition of Bifording bromoformate
ester5. Reduction of both ester groups Srfurnished bromodiob,? which was smoothly transformed
to epoxide7** in the presence of lithium hexamethyldisilazide.
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Scheme 1. Reagents: (a),Tf (2.2 equiv.), pyr, ChECly; (b) CsOAc, DMF; (c) NBS-KHO, DMF; (d) DIBAL-H, ben-
zene—toluene; (e) LIN(TM$) THF, 78°C

Initial attempts to carry out the oxidative opening of epoxrd® 9 using DMSO in the presence of
either boron trifluoride etherateor triflic acid'® led instead to triol8,1’ the product of directrans-
opening of the oxirane ring (Scheme 2). Recognizing that the bis-allylic diol group®gight form a
cyclic stannylene, and that such stannylenes have been reported to undergo selective oXfdiitib8s,
was treated with (Bs5n»O and Bp. After aqueous workup, the desired dihydroxyket@neas obtained
in 51% yield1®

Several lines of evidence suggested that in the reactiohwath DMSO, the fragmentation of the
resulting oxysulfonium salt using triethylamine was slow. Ultimately, the desired transformation of
directly to dihydroxyenon® was achieved using methanesulfonic acid/DMSO, followed by an excess
of EtsN at rt. In the process of confirming the structure ®fits cyclohexylidene acetal group was
hydrolyzed to afford the known natural product KD16-U0, a metabolite oBtreptomyces filipensf8
All spectroscopic and chiroptical data for compouk®l which has been prepared by other groGgs,
matched the values reported in the literature. However, the melting point of several samp@s of
prepared in our laboratory was higher (mp 131-132°C) than that reported for natural or synthetic samples
(mp 114°C) under identical crystallization conditions. To resolve this discrepancy, we obtained a sample
of natural10,1° whose'H NMR spectrum was identical with synthetic }-10. After recrystallization
from ethyl acetate, naturédD gave mp 130-131°C, undepressed when admixed with synthegtidX As
further independent confirmation, the structures of synthetfjedand ( )-10prepared in our laboratory
were confirmed by single crystal X-ray diffraction analysis.

The primary hydroxyl group in dic® was selectively crotonylated to affofd.2! Deprotection of the
acetal furnished ()-COTC 1 in eight steps and 7.4% overall yield frazn
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Scheme 2. Reagents: (f) BFOEt, DMSO; (g) (BuSn)0, Br, (1.5 equiv. ea), CkCly; (h) CH;SO;H, DMSO, rt, 1.5 h; then
Et;N, rt, 5 min; (i) 1:1 TFA:HO; (j) crotonic anhydride, DCC, DMAP, THF
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